Local boundedness of monotone bifunctions

نویسندگان

  • Mohammad Hossein Alizadeh
  • Nicolas Hadjisavvas
چکیده

We consider bifunctions F : C ×C → R where C is an arbitrary subset of a Banach space. We show that under weak assumptions, monotone bifunctions are locally bounded in the interior of their domain. As an immediate corollary, we obtain the corresponding property for monotone operators. Also, we show that in contrast to maximal monotone operators, monotone bifunctions (maximal or not maximal) can also be locally bounded at the boundary of their domain; in fact, this is always the case whenever C is a locally polyhedral subset of R and F (x, ·) is quasiconvex and lower semicontinuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cyclic and n-cyclic monotonicity of bifunctions

In the recent literature, the connection between maximal monotone operators and the Fitzpatrick function is investigated. Subsequently, this relation has been extended to maximal monotone bifunctions and their Fitzpatrick transform. In this paper we generalize some of these results to maximal n-cyclically monotone and maximal cyclically monotone bifunctions, by introducing and studying the Fitz...

متن کامل

Variational Principles for Monotone and Maximal Bifunctions

We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces. As applications, we give an existence result of saddle point for convex-concave function and solve an approximate inclusion governed by a maximal monotone operator.

متن کامل

Strong Convergence of a Monotone Projection Algorithm in a Banach Space

In this paper, a common solution problem is investigated based on a Bregman projection. Strong convergence of the monotone projection algorithm for monotone operators and bifunctions is obtained in a reflexive Banach space.

متن کامل

Monotone and Pseudo-monotone Equilibrium Problems in Hadamard Spaces

As a continuation of previous work of the first author with S. Ranjbar [26] on a special form of variational inequalities in Hadamard spaces, in this paper we study equilibrium problems in Hadamard spaces, which extend variational inequalities and many other problems in nonlinear analysis. In this paper, first we study the existence of solutions of equilibrium problems associated with pseudomon...

متن کامل

A Brøndsted-Rockafellar Theorem for Diagonal Subdifferential Operators

In this note we give a Brøndsted-Rockafellar Theorem for diagonal subdifferential operators in Banach spaces. To this end we apply an Ekeland-type variational principle for monotone bifunctions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012